Antiferromagnetism in semiconducting KFe$_{0.85}$Ag$_{1.15}$Te$_2$ single crystals

Hechang Lei, Emil S. Bozin, Kefeng Wang, and C. Petrovic

Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 3 May 2011; published 16 August 2011)

We have synthesized single crystals of K$_{1+2x}$Fe$_{0.85y}$Ag$_{1.15z}$Te$_2$ by introducing alkali metal atomic layers between FeCh sheets. Further studies indicate that in the new superconductors the T_c gets enhanced when compared to FeCh-11 materials, but there is also a set of distinctive physical properties. FeCh-122 materials are close to the metal-semiconducting crossover and antiferromagnetic (AFM) order. This is in contrast to other superconductors which are in close proximity to the spin-density wave state. The Fermi surface in FeCh-122-type Fe-HTSs contains only electronlike sheets without the nesting features found in most other Fe-HTS.

On the other hand, superconductivity in FeCh-11 materials is quite robust with respect to anion change, as seen on the example of FeSe$_{1-x}$, FeTe$_{1-x}$, and FeTe$_{1-x}$S$_x$. However, in FeCh-122 compounds, superconductivity is only observed in A$_x$Fe$_{2-y}$Se$_2$ or K$_x$Fe$_{2-y}$Se$_2$-S$_y$, while pure K$_x$Fe$_{2-y}$S$_2$ is a semiconductor with spin-glass transition at low temperature. Moreover, the theoretical calculation indicates that the hypothetical KFe$_2$Te$_2$, if synthesized, would have higher T_c than K$_x$Fe$_{2-y}$Se$_2$. Therefore, synthesis and examination of physical properties of FeCh-122 materials containing FeTe layers could be very instructive.

In this Rapid Communication we report discovery of K$_{1.00(3)}$Fe$_{0.85(2)}$Ag$_{1.15(2)}$Te$_2$0.1 single crystals. The resistivity and magnetic measurements indicate that this compound has the semiconducting long-range AFM order at low temperature, with no superconductivity down to 1.9 K.

Single crystals of KFe$_2$Ag$_2$Te$_2$ were grown by the self-flux method reported elsewhere in detail, with nominal composition K:Fe:Ag:Te = 1:1:1:2. Single crystals with typical size 5×5×2 mm3 can be grown. Powder x-ray diffraction (XRD) data were collected at 300 K using 0.3184 Å wavelength radiation (38.94 keV) at the X7B beamline of the National Synchrotron Light Source. The average stoichiometry was determined by examination of multiple points using an energy-dispersive x-ray spectroscopy (EDX) in a JEOL JSM-6500 scanning electron microscope. Electrical transport measurements were performed using a four-probe configuration on rectangular-shaped polished single crystals with current flowing in the ab plane of tetragonal structure. Thin Pt wires were attached to electrical contacts made of silver paste. Electrical transport, heat capacity, and magnetization measurements were carried out in Quantum Design PPMS-9 and MPMS-XL5.

Figure 1(a) shows powder XRD results and structural refinements of K(Fe,Ag)$_2$Te$_2$ using a general structure analysis system (GSAS). It can be seen that all reflections can be indexed in the $I4/mmm$ space group. The refined structure parameters are listed in Table I. The determined lattice parameters are $a = 4.3707(9)$ Å and $c = 14.9540(8)$ Å, which are reasonably smaller than those of CsFe$_2$Ag$_{2-y}$Te$_2$ [$a = 4.5058(4)$ Å and $c = 15.4587(8)$ Å$]^{14}$, but much larger than those of K$_x$Fe$_{2-y}$Se$_2$ and K$_x$Fe$_{2-y}$S$_2$. Due to the smaller ionic size of K$^+$ than Cs$^+$ and larger size of Ag$^+$ and Te$^{2-}$ than Fe$^{2+}$ and Se$^{2-}$ (S$^{2-}$). On the other hand, a larger a-axis lattice parameter indicates that the Fe plane is stretched in K(Fe,Ag)$_2$Te$_2$ when compared to FeTe. The crystal structure of K(Fe,Ag)$_2$Te$_2$ is shown in Fig. 1(b), where antifluorite-type Fe/Ag-Te layers and K cation layers are stacked alternately along the c axis. The XRD pattern of a single crystal [Fig. 1(c)] reveals that the crystal surface is normal to the c axis with the plate-shaped surface parallel to the ab plane. Figure 1(d) presents the EDX spectrum of a single crystal, which confirms the presence of the K, Fe, Ag, and Te. The average atomic ratios determined from EDX are K:Fe:Ag:Te = 1.00(3):0.85(2):1.15(2):1.0(1). The value of Fe/(Ag + Fe) determined from XRD fitting (0.38) is close to that obtained from EDX (0.43), which suggests that Te compound prefers to contain more Ag. This might explain why pure KFe$_2$Te$_2$ cannot form, since large Ag$^+$ ions have to be introduced in order to match the rather large Te$^{2-}$ anions and keep the stability of the structure. On the other hand, it should be noted that there are no K or Fe/Ag deficiencies in K(Fe,Ag)$_2$Te$_2$. This is rather different from K$_x$Fe$_{2-y}$Se$_2$ and K$_x$Fe$_{2-y}$S$_2$. Moreover, synchrotron powder X-ray
The big blue, small red, and medium orange balls represent K, Fe, or not more than 5% vacancies (i.e., Te). The EDX spectrum of a single crystal.

Figure 2 shows the temperature dependence of the in-plane resistivity $\rho_{ab}(T)$ of the KFe$_{0.85}$Ag$_{1.15}$Te$_2$ single crystal for $H = 0$ (closed red circle) and 90 kOe (open blue square, $H||c$). Inset (a) shows the fitted result using thermal activation model for $\rho_{ab}(T)$ at zero field where the red line is the fitting curve. Inset (b) exhibits the temperature dependence of MR(T) for KFe$_{0.85}$Ag$_{1.15}$Te$_2$.

TABLE I. Structural parameters for K(Fe,Ag)$_2$Te$_2$ at room temperature. Values in brackets give the number of equivalent distances or angles of each type. The occupancies of K and Te are fixed during fitting.

<table>
<thead>
<tr>
<th>Chemical formula</th>
<th>K_{x+y+z}Fe${0.85}$Ag${1.52}$Te$_{2.01}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>space group</td>
<td>I4/mmm</td>
</tr>
<tr>
<td>a (Å)</td>
<td>4.3707(9)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>14.9540(8)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>285.7(1)</td>
</tr>
<tr>
<td>Interatomic distances (Å) Bond angles (°)</td>
<td></td>
</tr>
<tr>
<td>$d_{Te-Ag/Te-Ag}$</td>
<td>3.0906(4) Te-Fe/Ag-Te [2] 104.44(3)</td>
</tr>
<tr>
<td>$d_{Te-Ag/Ag-Ag}$</td>
<td>2.7651(5) Te-Fe/Ag-Te [4] 112.05(4)</td>
</tr>
<tr>
<td>Anion heights (Å)</td>
<td>1.694(7)</td>
</tr>
<tr>
<td>Atom x y z Occ. U_{iso} (Å2)</td>
<td></td>
</tr>
<tr>
<td>K 0 0 0 1.00 0.056(5)</td>
<td></td>
</tr>
<tr>
<td>Fe 0.5 0 0.25 0.76(8) 0.035(7)</td>
<td></td>
</tr>
<tr>
<td>Ag 0.5 0 0.25 1.24(8) 0.035(7)</td>
<td></td>
</tr>
<tr>
<td>Te 0.5 0.5 0.1367(5) 1.00 0.034(4)</td>
<td></td>
</tr>
</tbody>
</table>

The resistivity increases with decreasing temperature. Values in brackets give the number of equivalent distances or angles of each type. The occupancies of K and Te are fixed during fitting.

FIG. 1. (Color online) (a) Powder XRD patterns of KFe$_{0.85}$Ag$_{1.15}$Te$_2$. (b) Crystal structure of KFe$_{0.85}$Ag$_{1.15}$Te$_2$. The big blue, small red, and medium orange balls represent K, Fe/Ag, and Te ions. (c) Single-crystal XRD of KFe$_{0.85}$Ag$_{1.15}$Te$_2$. (d) The EDX spectrum of a single crystal.

The room-temperature value of ρ_{ab} is about 2.7 Ω cm, which is much larger than in superconducting K$_x$Fe$_2$-Se$_2$ and semiconducting K$_x$Fe$_2$-S$_2$. The magnetic behavior might be related to the random distribution of Fe and Ag ions in the Fe/Ag plane which induces a random scattering potential, similar to the effect of Fe deficiency in the FeSe or FeS plane. By fitting the resistivity $\rho_{ab}(T)$ at high temperature using the thermal activation model $\rho = \rho_0 \exp(E_a/\kappa_B T)$, where ρ_0 is a prefactor and κ_B is Boltzmann’s constant [inset (a) of Fig. 2], we obtained $\rho_0 = 71(6)$ mΩ cm and the activation energy $E_a = 96(2)$ meV in the temperature range above 200 K, which is larger than that of K$_x$Fe$_2$-Se$_2$K$_x$Fe$_{0.85}$Ag$_{1.15}$Te$_2$ exhibits large magnetoresistance $\text{MR} = (\rho(H) - \rho(0))/\rho(0)$ below about 100 K where the shoulder appears. As shown in inset (b) of Fig. 2, the negative MR is about 30% at 1.9 K for $H = 90$ kOe. This behavior is distinctly different from K$_x$Fe$_{2−}$-Se$_2$, which does not show any MR in measured temperature range.

Figure 3(a) presents the temperature dependence of magnetic susceptibility $\chi(T)$ of the KFe$_{0.85}$Ag$_{1.15}$Te$_2$ single crystal for $H = 1$ kOe along the ab plane and the c axis below 300 K with zero-field-cooling (ZFC) and field-cooling (FC). The $\chi_{ab}(T)$ is slightly larger than $\chi_{c}(T)$, and above 50 K, both can be fitted very well using Curie-Weiss law $\chi(T) = \chi_0 + C/(T - \theta)$, where χ_0 includes core diamagnetism, van Vleck and Pauli paramagnetism, C is the Curie constant, and θ is the Curie-Weiss temperature [solid lines in Fig. 3(a)]. The fitted parameters are $\chi_0 = 5.46(7) \times 10^{-6}$ emu g$^{-1}$ Oe$^{-1}$, $C = 2.58(3) \times 10^{-3}$ emu g$^{-1}$ Oe$^{-1}$ K, and $\theta = -82(1)$ K for χ_{ab}, and $\chi_0 = 3.5(1) \times 10^{-6}$ emu g$^{-1}$ Oe$^{-1}$, $C = 2.92(5) \times 10^{-3}$ emu g$^{-1}$ Oe$^{-1}$ K, and $\theta = -100(2)$ K for χ_{c}. The above values of C correspond to an effective moment of $\mu_{\text{eff}} = 3.60(2)$ μB/Fe and 3.83(3) μB/Fe for χ_{ab} and χ_{c}, respectively. The values of μ_{eff} are smaller than for free Fe$^{2+}$ ions (4.7 μB/Fe) and Fe$_{1+x}$Te$_2$ (4.9 μB/Fe), but slightly larger than in K$_x$Fe$_{2−}$-Se$_2$ (3.31 μB/Fe).
ANTIFERROMAGNETISM IN SEMICONDUCTING KFe... PHYSICAL REVIEW B 84, 060506(R) (2011)

FIG. 3. (Color online) (a) Temperature dependence of DC magnetic susceptibility\(\chi(T) \) with the applied field \(H = 1 \text{kOe} \) along the \(ab \) plane and \(c \) axis below 300 K under ZFC and FC mode. The inset shows the \(d(\chi(T))/dT \) result for both field directions. (b) Isothermal magnetization hysteresis loops \(M(H) \) for \(H||ab \) and \(H||c \) at various temperatures.

We observe sharp drops below 35 K in both ZFC and FC curves, associated with the onset of long-range AFM order. The \(T_N = 35 \text{ K} \) is determined from the peak of \(d(\chi(T))/dT \) [inset of Fig. 3(a)]. It should be noted that antiferromagnetism below 35 K and Curie-Weiss paramagnetism at higher temperature are obviously different from \(\text{KFe}_2x\text{Se}_2 \) and \(\text{KFe}_2y\text{Se}_2 \). Figure 3(b) shows the magnetization loops for both field directions at various temperatures. It can be seen that all M-H loops exhibit almost linear field dependence and the \(M(H) \) curve exhibits a very small hysteresis at 1.8 K with a small coercive field (\(\sim 260 \text{ Oe} \)).

Figure 4 shows the temperature dependence of heat capacity \(C_p \) for \(\text{KFe}_{0.85}\text{Ag}_{1.15}\text{Te}_2 \) single crystals measured between \(T = 1.95 \) and 300 K in a zero magnetic field. At high temperature heat capacity approaches the Dulong-Petit value of \(3.11(2) \text{ mJ mol}^{-1} \text{ K}^{-1} \). The obtained \(S_{\text{mag}}(T) \) can be calculated using the integral \(S_{\text{mag}}(T) = \int_0^T C_{\text{mag}}/dT \). Because of the failure of the Debye model at \(T > \Theta_D \), we estimated the lattice specific heat by fitting a polynomial to the \(C_p(T) \) curve at temperatures well away from \(T_N \). The obtained \(S_{\text{mag}} \) is about 2.4 J (mol Fe)\(^{-1} \text{ K}^{-1} \) up to 60 K, which is only 18% of theoretical value (\(13.4 \text{ J (mol Fe)}^{-1} \text{ K}^{-1} \) for high-spin-state Fe\(^{2+} \) ions). Note that only about 1 J (mol Fe\(^{2+} \) K\(^{-1} \) is released below \(T_N \). This discrepancy may originate from an incorrect estimation of the lattice contribution to \(C_p(T) \), which can lead to reduced \(S_{\text{mag}}(T) \) or a probable short-range order that may exist above the bulk three-dimensional AFM order occurring at \(T_N \). This could also be supported by a much smaller \(T_N = 35 \text{ K} \) compared to the Curie-Weiss temperature \(\theta = -100(2) \text{ K} \) for \(H||c \).

There are two origins which could induce the negative MR effect in semiconductors: the reduction in spin disorder scattering due to the alignment of moments under a field, and the reduction of the gap arising from the splitting of the up- and down-spin subbands. The existence of AFM interaction could be related to this negative MR effect. The
temperature where MR effect becomes obvious is consistent with the Curie-Weiss temperature θ, which implies this MR effect could be related to the AFM interaction and due to the reduction in spin disorder scattering with field. When compared to K$_4$Fe$_2$−$_y$Se$_2$, substitution of Ag has an important influence on the magnetic and transport properties. It could reduce the exchange interaction between Fe atoms and thus suppress the T_N of KFe$_{0.85}$Ag$_{1.15}$Te$_2$ significantly. On the other hand, because of the near absence of vacancies in KFeCuS$_2$ and similar valence between Cu and Ag, it is more meaningful to compare the physical properties between KFeCuS$_2$ and KFe$_{0.85}$Ag$_{1.15}$Te$_2$. The former has the larger E_a and room-temperature resistivity than the latter. This could be due to the smaller ionic sizes of Cu and S when compared to Ag and Te, which might lead to the smaller orbital overlap increasing E_a and resistivity. Both compounds exhibit Curie-Weiss law above 50 K and the fitted Curie-Weiss temperature θ is very close to the transition of KFe$_{0.85}$Ag$_{1.15}$Te$_2$. However, the transition of KFeCuS$_2$ is spin glasslike, in contrast to the long-range AFM order of KFe$_{0.85}$Ag$_{1.15}$Te$_2$. This implies that the distribution of Ag in KFe$_{0.85}$Ag$_{1.15}$Te$_2$ may be different from Cu in KFeCuS$_2$, which results in a different magnetic ground-state configuration with similar interaction strength.

In summary, we successfully synthesized the K$_{1.003}$Fe$_{0.85(2)}$Ag$_{1.15(2)}$Te$_{2.0(1)}$ single crystals with ThCr$_2$Si$_2$ structure, identical to K$_{0.8}$Fe$_2$−$_y$Se$_2$ at 600 K. Crystal structure and composition analysis indicate that there are no K, Fe/Ag, and Te vacancies within 3, 2, or 5 at. %, respectively. Transport, magnetic, and thermal measurements indicate that the KFe$_{0.85}$Ag$_{1.15}$Te$_2$ is a semiconductor with long-range AFM order below 35 K.

We thank John Warren for help with scanning electron microscopy measurements and Jonathan Hanson for help with x-ray measurements. Work at Brookhaven is supported by the US DOE under Contract No. DE-AC02-98CH10886 and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office for Basic Energy Science.
